Образование для Вас

Волновая и корпускулярная теории. Корпускулярные свойства света. Корпускулярно-волновой дуализм свойств вещества Волновые и корпускулярные свойства

Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит.

В это же время Эвклидом был сформулирован закон прямолинейного распространения света. Он писал: “Испускаемые глазами лучи распространяются по прямому пути”.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эти точки зрения можно считать уже забытыми.

В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа.

Одна из этих теорий связана с именем Ньютона, а другая – с именем Гюйгенса.

Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет – это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представлениям Гюйгенса, свет – это поток волн, распространяющихся в особой, гипотетической среде – эфире, заполняющем все пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.

Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света.

После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось.

Однако в нале XIX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности.

При излучении и поглощении свет ведет себя подобно потоку частиц.

Были обнаружены прерывистые, или, как говорят, квантовые, свойства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно объяснить, считая свет волной, а явления излучения и поглощения – считая свет потоком частиц. Эти два, казалось бы, несовместимых друг с другом представления о природе света в 30-х годах XX века удалось непротиворечивым образом объединить в новой выдающейся физической теории – квантовой электродинамике.

1. Волновые свойства света

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то что, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не »(слова из надписи на могиле Ньютона) Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Саму радужную полоску Ньютон назвал спектром.

Закрывая отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрывая синим-синее и т.д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет цвета, а лишь разлагает его на составные части. Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180 градусов относительно первой. Собрать все пучки спектра, то опять получится белый свет. Выделив же какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по «Оптике» следующим образом: « Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости» Наиболее сильно преломляются фиолетовые лучи, меньше других – красные. Зависимость показателя преломления света от его цвета носит название дисперсии (от латинского слова Dispergo-разбрасываю).

В дальнейшем Ньютон усовершенствовал свои наблюдения спектра, чтобы получить более чистые цвета. Ведь круглые цветные пятна светового пучка, прошедшего через призму, частично перекрывали друг друга. Вместо круглого отверстия использовалась узкая щель (А), освещенная ярким источником. За щелью располагалась линза (B), дающая на экране (D) изображение в виде узкой белой полоски. Если на пути лучей поместить призму (C), то изображение щели растянется в спектр, окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Опыт Ньютона изображен на рис.1

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране, на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1.Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2. Белый цвет есть совокупность простых цветов.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина на поверхности воды. Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением двух волн, одна из которых (А) отражается от наружной поверхности пленки, а вторая (В)– от внутренней (рис.2)

В

А

При этом происходит интерференция световых волн – сложение двух волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства. Результат интерференции (усиления или ослабление результирующих колебаний) зависит от толщины пленки и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 (отражающаяся от внутренней поверхности пленки) отстанет от волны 1 (отражающейся от наружной поверхности пленки) на цело число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Для того чтобы при сложении волн образовалась устойчивая интерференционная картина, волны должны быть когерентными, т.е. должны иметь одинаковую длины волны и постоянную разность фаз. Когерентность волн, отраженных от наружной и внутренней поверхности пленки, обеспечивается тем, что обе они являются частями одного светового пучка. Волны же, испущенные двумя обычными независимыми источниками, не дают интерференционной картины из-за того, что разность фаз двух волн от таких источников не постоянна.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым потокам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, различающихся друг от друга длиной, требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Дифракция света в узком смысле - явление огибания светом препятствий и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

В 1802г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис.3).

В непрозрачной ширме, он проколол булавкой два маленьких отверстия B и C, на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. В следствии дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Исследование дифракции получило свое завершение в работах Френеля. Он детально исследовал различные функции дифракции на опытах и построил количественную теорию дифракции, позволяющую рассчитать дифракционную картину, возникающую при огибании светом любых препятствий.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Новые свойства о характере световых волн показывает опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Турмалин представляет собой кристалл буро – зеленого цвета, след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Из данных явлений можно сделать следующие выводы:

1. Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2. Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3. В свете фонаря (солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

2. Квантовые свойства света

В 1887г. немецкий физик Герц объяснил явление фотоэффекта. Основой этому послужила Гипотеза Планка о квантах.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Были сделаны попытки объяснить закономерности внешнего фотоэффекта на основе волновых представлений о свете. Согласно этим представлениям, механизм фотоэффекта выглядит так. На металл падает световая волна. Электроны, находящиеся в его поверхностном слое, поглощают энергию этой волны, и их энергия постепенно увеличивается. Когда она становится больше работы выхода, электроны начинают вылетать из металла. Таким образом, волновая теория света будто бы способна качественно объяснить явление фотоэффекта.

Однако расчеты показали, что при таком объяснении время между началом освещения металла и началом вылета электронов должно быть порядка десяти секунд. Между тем из опыта следует, что t<10-9c. Следовательно, волновая теория света не объясняет безинерционности фотоэффекта. Не может она объяснить и остальные законы фотоэффекта.

Согласно волновой теории кинетическая энергия фотоэлектронов должна возрастать с увеличением интенсивности света, падающего на металл. А интенсивность волны определяется амплитудой колебаний напряжённости Е, а не частотой света. (От интенсивности падающего света зависит лишь число выбиваемых электронов и сила тока насыщения).

Из волновой теории следует, что энергию, необходимую для вырывания электронов из металла, способно дать излучение любой длины волны, если его интенсивность достаточно велика, т.е. что фотоэффект может вызываться любым световым излучением. Однако существует красная граница фотоэффекта, т.е. получаемая электронами энергия зависит не от амплитуды волны, а от ее частоты.

Таким образом, попытки объяснить закономерности фотоэффекта на основе волновых представлений о свете оказались несостоятельными.

Эффектом Комптона называется изменение частоты или длинны волны фотонов при их рассеянии электронами и нуклонами. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Эффект Комптона отличается от фотоэффекта тем, что фотон передает частицам вещества свою энергию не полностью. Частным случаем эффекта Комптона являются рассеяние рентгеновских лучей на электронных оболочках атомов и рассеяние гамма-лучей на атомных ядрах. В простейшем случае эффект Комптона представляет собой рассеяние монохроматических рентгеновских лучей легкими веществами (графит, парафин и др.) и при теоретическом рассмотрении этого эффекта в этом случае электрон считается свободным.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором – поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т.е. эффект Комптона.

Заключение

Явления интерференции, дифракции, поляризации света от обычных источников света неопровержимо свидетельствует о волновых свойствах света. Однако и в этих явлениях при соответствующих условиях свет проявляет корпускулярные свойства. В свою очередь, закономерности теплового излучения тел, фотоэлектрического эффекта и других неоспоримо свидетельствуют, что свет ведет себя не как непрерывная, протяженная волна, а как поток «сгустков» (порций, квантов) энергии, т.е. как поток частиц – фотонов.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Список использованной литературы

1. Яворский Б.М. Детлаф А.А. Справочник по физике. – М.: Наука 2002.

2. Трофимова Т.И. Курс физики – М.: Высшая школа 2001.

3. Гурский И.П. Элементарная физика под ред. И.В. Савельева – М.: Просвещение 1984

4. Мякишев Г.Я. Буховцев Б.Б. Физика – М.: Просвещение 1982.

Содержание

  • Содержание 1
    • Введение 2
    • 1. Волновые свойства света 3
      • 1.1 Дисперсия 3
      • 1.2 Интерференция 5
      • 1.3 Дифракция. Опыт Юнга 6
      • 1.4 Поляризация 8
    • 2. Квантовые свойства света 9
      • 2.1 Фотоэффект 9
      • 2.2 Эффект Комптона 10
    • Заключение 11

Введение

Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит.

В это же время Эвклидом был сформулирован закон прямолинейного распространения света. Он писал: “Испускаемые глазами лучи распространяются по прямому пути”.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эти точки зрения можно считать уже забытыми.

В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа.

Одна из этих теорий связана с именем Ньютона, а другая - с именем Гюйгенса.

Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет - это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представлениям Гюйгенса, свет - это поток волн, распространяющихся в особой, гипотетической среде - эфире, заполняющем все пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.

На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света.

После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось.

Однако в нале XIX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности.

При излучении и поглощении свет ведет себя подобно потоку частиц.

Были обнаружены прерывистые, или, как говорят, квантовые, свойства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно объяснить, считая свет волной, а явления излучения и поглощения - считая свет потоком частиц. Эти два, казалось бы, несовместимых друг с другом представления о природе света в 30-х годах XX века удалось непротиворечивым образом объединить в новой выдающейся физической теории - квантовой электродинамике.

1. Волновые свойства света

1.1 Дисперсия

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то что, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не »(слова из надписи на могиле Ньютона) Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Саму радужную полоску Ньютон назвал спектром.

Закрывая отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрывая синим-синее и т.д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет цвета, а лишь разлагает его на составные части. Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180 градусов относительно первой. Собрать все пучки спектра, то опять получится белый свет. Выделив же какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по «Оптике» следующим образом: « Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости» Наиболее сильно преломляются фиолетовые лучи, меньше других - красные. Зависимость показателя преломления света от его цвета носит название дисперсии (от латинского слова Dispergo-разбрасываю).

В дальнейшем Ньютон усовершенствовал свои наблюдения спектра, чтобы получить более чистые цвета. Ведь круглые цветные пятна светового пучка, прошедшего через призму, частично перекрывали друг друга. Вместо круглого отверстия использовалась узкая щель (А), освещенная ярким источником. За щелью располагалась линза (B), дающая на экране (D) изображение в виде узкой белой полоски. Если на пути лучей поместить призму (C), то изображение щели растянется в спектр, окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Опыт Ньютона изображен на рис.1

Рис.1

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране, на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1.Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2. Белый цвет есть совокупность простых цветов.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например, лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

1.2 Интерференция

Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина на поверхности воды. Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением двух волн, одна из которых (А) отражается от наружной поверхности пленки, а вторая (В)- от внутренней (рис.2)

Рис.2

При этом происходит интерференция световых волн - сложение двух волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства. Результат интерференции (усиления или ослабление результирующих колебаний) зависит от толщины пленки и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 (отражающаяся от внутренней поверхности пленки) отстанет от волны 1 (отражающейся от наружной поверхности пленки) на цело число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Для того чтобы при сложении волн образовалась устойчивая интерференционная картина, волны должны быть когерентными, т.е. должны иметь одинаковую длины волны и постоянную разность фаз. Когерентность волн, отраженных от наружной и внутренней поверхности пленки, обеспечивается тем, что обе они являются частями одного светового пучка. Волны же, испущенные двумя обычными независимыми источниками, не дают интерференционной картины из-за того, что разность фаз двух волн от таких источников не постоянна.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым потокам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, различающихся друг от друга длиной, требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

1.3 Дифракция. Опыт Юнга

Дифракция света в узком смысле - явление огибания светом препятствий и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

В 1802г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис.3).

Рис.3

В непрозрачной ширме, он проколол булавкой два маленьких отверстия B и C, на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. В следствии дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Исследование дифракции получило свое завершение в работах Френеля. Он детально исследовал различные функции дифракции на опытах и построил количественную теорию дифракции, позволяющую рассчитать дифракционную картину, возникающую при огибании светом любых препятствий.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

1.4 Поляризация

Новые свойства о характере световых волн показывает опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Турмалин представляет собой кристалл буро - зеленого цвета, след прошедшего пучка на экране представится в виде тёмно - зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Из данных явлений можно сделать следующие выводы:

1. Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2. Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3. В свете фонаря (солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

2. Квантовые свойства света

2.1 Фотоэффект

В 1887г. немецкий физик Герц объяснил явление фотоэффекта. Основой этому послужила Гипотеза Планка о квантах.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны.

Были сделаны попытки объяснить закономерности внешнего фотоэффекта на основе волновых представлений о свете. Согласно этим представлениям, механизм фотоэффекта выглядит так. На металл падает световая волна. Электроны, находящиеся в его поверхностном слое, поглощают энергию этой волны, и их энергия постепенно увеличивается. Когда она становится больше работы выхода, электроны начинают вылетать из металла. Таким образом, волновая теория света будто бы способна качественно объяснить явление фотоэффекта.

Однако расчеты показали, что при таком объяснении время между началом освещения металла и началом вылета электронов должно быть порядка десяти секунд. Между тем из опыта следует, что t<10-9c. Следовательно, волновая теория света не объясняет безинерционности фотоэффекта. Не может она объяснить и остальные законы фотоэффекта.

Согласно волновой теории кинетическая энергия фотоэлектронов должна возрастать с увеличением интенсивности света, падающего на металл. А интенсивность волны определяется амплитудой колебаний напряжённости Е, а не частотой света. (От интенсивности падающего света зависит лишь число выбиваемых электронов и сила тока насыщения).

Из волновой теории следует, что энергию, необходимую для вырывания электронов из металла, способно дать излучение любой длины волны, если его интенсивность достаточно велика, т.е. что фотоэффект может вызываться любым световым излучением. Однако существует красная граница фотоэффекта, т.е. получаемая электронами энергия зависит не от амплитуды волны, а от ее частоты.

Таким образом, попытки объяснить закономерности фотоэффекта на основе волновых представлений о свете оказались несостоятельными.

2.2 Эффект Комптона

Эффектом Комптона называется изменение частоты или длинны волны фотонов при их рассеянии электронами и нуклонами. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Эффект Комптона отличается от фотоэффекта тем, что фотон передает частицам вещества свою энергию не полностью. Частным случаем эффекта Комптона являются рассеяние рентгеновских лучей на электронных оболочках атомов и рассеяние гамма-лучей на атомных ядрах. В простейшем случае эффект Комптона представляет собой рассеяние монохроматических рентгеновских лучей легкими веществами (графит, парафин и др.) и при теоретическом рассмотрении этого эффекта в этом случае электрон считается свободным.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором - поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект - со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т.е. эффект Комптона.

Заключение

Явления интерференции, дифракции, поляризации света от обычных источников света неопровержимо свидетельствует о волновых свойствах света. Однако и в этих явлениях при соответствующих условиях свет проявляет корпускулярные свойства. В свою очередь, закономерности теплового излучения тел, фотоэлектрического эффекта и других неоспоримо свидетельствуют, что свет ведет себя не как непрерывная, протяженная волна, а как поток «сгустков» (порций, квантов) энергии, т.е. как поток частиц - фотонов.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Список использованной литературы

1. Яворский Б.М. Детлаф А.А. Справочник по физике. - М.: Наука 2002.

2. Трофимова Т.И. Курс физики - М.: Высшая школа 2001.

3. Гурский И.П. Элементарная физика под ред. И.В. Савельева - М.: Просвещение 1984

4. Мякишев Г.Я. Буховцев Б.Б. Физика - М.: Просвещение 1982.

Согласно представлениям классической физики, свет — это электромагнитные волны в определенном диапазоне частот. Однако взаимодействие света с веществом происхо-дит так, как если бы свет был потоком частиц.

Во времена ньютона имели место две гипотезы о при-роде света — корпускулярная , которой придерживался Ньютон, и волновая . Дальнейшее развитие эксперимен-тальной техники и теории сделало выбор в пользу волновой теории .

Но в начале XX в. возникли новые проблемы: взаимодейст-вие света с веществом не находило объяснения в рамках волновой теории .

При освещении куска металла светом из него вылетают электроны (фотоэффект ). Следовало ожидать, что скорость вылетающих электронов (их кинетическая энергия) будет тем больше, чем больше энергия падающей волны (интен-сивность света), но оказалось, что скорость электронов во-обще не зависит от интенсивности света, а определяется его частотой (цветом).

Фотография основана на том, что некоторые мате-риалы после освещения светом и последующей химической обработки темнеют, причем степень их почернения пропорци-ональна освещенности и времени освещения. Если слой такого материала (фотопластинка) освещать светом с определенной ча-стотой, то после проявле-ния однородная поверх-ность почернеет. При снижении интенсивности света будем получать од-нородные поверхности со все меньшими степенями почернения (различные оттенки серого цвета). А кончится все тем, что при очень малой осве-щенности мы получим не очень малую степень по-чернения поверхности, а хаотично рассеянные по поверхности черные точ-ки! Как будто свет попал только в эти места.

Особенности взаимодействия света с веществом вынуди-ли физиков вернуться к корпускулярной теории .

Взаимодействие света с веществом происходит так, как ес-ли бы свет был потоком частиц, энергия и импульс которых связаны с частотой света соотношениями

E = hv; p = E / c = hv / c,

где h — постоянная Планка. Эти частицы получили назва-ние фотоны .

Фотоэффект мог быть понят, если стать на точку зрения корпускулярной теории и считать свет потоком частиц. Но тогда возникает проблема, как быть с другими свойствами света, которыми занимался обширный раздел физики — оп-тика , исходящая из того, что свет есть электромагнитные волны.

Ситуация, при которой отдельные явления объясняются с помощью специальных предположений, нестыкующихся друг с другом или даже противоречащих одно другому, считается неприемлемой, поскольку физика претендует на создание единой картины мира. И подтверждением обоснованности этой претензии служило как раз то, что незадолго до трудностей, возникших в связи с фо-тоэффектом, оптика была сведена к электродинамике. Явления интерференции и дифракции определенно не согласовывались с представлениями о частицах, но не-которые свойства света одинаково хорошо объясняют-ся и с той и с другой точек зрения. Электромагнитная волна обладает энергией и импульсом, причем импульс пропорционален энергии. При поглощении света он передает свой импульс, т. е. на преграду действует сила давления, пропорциональная интенсивности света. По-ток частиц также оказывает давление на преграду, и при подходящей связи между энергией и импульсом частицы давление будет пропорционально интенсивности потока. Важным достижением теории было объяснение рассеяния света в воздухе, в результате чего стало понятно, в частности, почему небо синее. Из теории следовало, что при рассеянии частота света не изменяется.

Однако если стать на точку зрения корпускулярной теории и считать, что та характеристика света, которая в волновой тео-рии связывается с частотой (цвет), в корпускулярной связана с энергией частицы, то окажется, что при рассеянии (столк-новении фотона с рассеивающей частицей) энергия рассеян-ного фотона должна уменьшиться. Специально проведенные эксперименты по рассеянию рентгеновских лучей, которым соответствуют частицы с энергией на три порядка больше, чем для видимого света, показали, что корпускулярная тео-рия верна. Свет следует считать потоком частиц, а явления интерференции и дифракции получили объяснение в рамках квантовой теории. Но при этом изменилось и само понятие частицы как объекта исчезающе малого размера, движуще-гося по определенной траектории и имеющего в каждой точ-ке определенную скорость.

Новая теория не отменяет правильных результатов старой, но может изменить их интерпретацию. Так, если в волно-вой теории цвет связывался с длиной волны, в корпуску-лярной он связан с энергией соответствующей частицы: фотоны, вызывающие у нас в глазу ощущение красного цвета, имеют меньшую энергию, чем синего. Материал с сайта

Для света был проведен опыт с электронами (опыт Юн-га). Освещенность экрана за щелями имела такой же вид, как для электронов, и эта картина интерференции света, попадающего на экран от двух щелей, служила доказатель-ством волновой природы света.

Проблема, связанная с волновыми и корпуску-лярными свойствами час-тиц , имеет на самом деле долгую историю. Ньютон считал, что свет есть по-ток частиц. Но в то же время имела хождение гипотеза о волновой при-роде света, связанная, в частности, с именем Гюй-генса. Существовавшие в то время данные о пове-дении света (прямоли-нейное распространение, отражение, преломление и дисперсия) одинаково хорошо объяснялись и с той и с другой точек зре-ния. При этом, конечно, о природе световых волн или частиц ничего опре-деленного сказать было нельзя.

Позднее, однако, после обнаружения явлений ин-терференции и дифрак-ции света (начало XIX в.) ньютоновская гипотеза была оставлена. Дилемма «волна или частица» для света была эксперимен-тально решена в пользу волны, хотя оставалась неясной природа световых волн. Далее выяснилась и их природа. Световые вол-ны оказались электромаг-нитными волнами опреде-ленных частот, т. е. распространением возму-щения электромагнитного поля. Волновая теория как будто бы окончательно восторжествовала.

На этой странице материал по темам:

Введение 2

1. Волновые свойства света 3

1.1 Дисперсия 3

1.2 Интерференция 5

1.3 Дифракция. Опыт Юнга 6

1.4 Поляризация 8

2. Квантовые свойства света 9

2.1 Фотоэффект 9

2.2 Эффект Комптона 10

Заключение 11

Список использованной литературы 11

Введение

Первые представления древних ученых о том, что такое свет, были весьма наивны. Существовало несколько точек зрения. Одни считали, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Эта точка зрения имела большое число последователей, среди которых был Эвклид, Птолемей и многие другие ученые и философы. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались Лукреций, Демокрит.

В это же время Эвклидом был сформулирован закон прямолинейного распространения света. Он писал: “Испускаемые глазами лучи распространяются по прямому пути”.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эти точки зрения можно считать уже забытыми.

В 17 веке почти одновременно возникли и начали развиваться две совершенно разные теории о том, что такое свет и какова его природа.

Одна из этих теорий связана с именем Ньютона, а другая с именем Гюйгенса.

Ньютон придерживался так называемой корпускулярной теории света, согласно которой свет это поток частиц, идущих от источника во все стороны (перенос вещества).

Согласно же представлениям Гюйгенса, свет это поток волн, распространяющихся в особой, гипотетической среде эфире, заполняющем все пространство и проникающем внутрь всех тел.

Обе теории длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял большинство ученых отдавать предпочтение корпускулярной теории. Известные в то время из опыта законы распространения света более или менее успешно объяснялись обеими теориями.

На основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции.

Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Эти явления присуще исключительно волновому движению. Объяснить их с помощью корпускулярной теории нельзя. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Такая уверенность особенно окрепла, когда Максвелл во второй половине XIX века показал, что свет есть частный случай электромагнитных волн. Работами Максвелла были заложены основы электромагнитной теории света.

После экспериментального обнаружения электромагнитных волн Герцем никаких сомнений в том, что при распространении свет ведет себя как волна, не осталось.

Однако в нале XIX века представления о природе света начали коренным образом изменяться. Неожиданно выяснилось, что отвергнутая корпускулярная теория все же имеет отношение к действительности.

При излучении и поглощении свет ведет себя подобно потоку частиц.

Были обнаружены прерывистые, или, как говорят, квантовые, свойства света. Возникла необычная ситуация: явления интерференции и дифракции по-прежнему можно объяснить, считая свет волной, а явления излучения и поглощения считая свет потоком частиц. Эти два, казалось бы, несовместимых друг с другом представления о природе света в 30-х годах XX века удалось непротиворечивым образом объединить в новой выдающейся физической теории квантовой электродинамике.

1. Волновые свойства света

1.1 Дисперсия

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то что, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не (слова из надписи на могиле Ньютона) Основной опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов, Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Саму радужную полоску Ньютон назвал спектром.

Закрывая отверстие красным стеклом, Ньютон наблюдал на стене только красное пятно, закрывая синим-синее и т.д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет цвета, а лишь разлагает его на составные части. Белый свет имеет сложную структуру. Из него можно выделить пучки различных цветов, и лишь совместное их действие вызывает у нас впечатление белого цвета. В самом деле, если с помощью второй призмы, повернутой на 180 градусов относительно первой. Собрать все пучки спектра, то опять получится белый свет. Выделив же какую-либо часть спектра, например зеленую, и заставив свет пройти еще через одну призму, мы уже не получим дальнейшего изменения окраски.

Другой важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по Оптике следующим образом: Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости Наиболее сильно преломляются фиолетовые лучи, меньше других красные. Зависимость показателя преломления света от его цвета носит название дисперсии (от латинского слова Dispergo-разбрасываю).

В дальнейшем Ньютон усовершенствовал свои наблюдения спектра, чтобы получить более чистые цвета. Ведь круглые цветные пятна светового пучка, прошедшего через призму, частично перекрывали друг друга. Вместо круглого отверстия использовалась узкая щель (А), освещенная ярким источником. За щелью располагалась линза (B), дающая на экране (D) изображение в виде узкой белой полоски. Если на пути лучей поместить призму (C), то изображение щели растянется в спектр, окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Опыт Ньютона изображен на рис.1

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране, на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1.Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2. Белый цвет есть совокупность простых цветов.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например, лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

1.2 Интерференция

Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за

ВОЛНОВЫЕ И КОРПУСКУЛЯРНЫЕ СВОЙСТВА СВЕТА

Костромской государственный университет
Улица 1 Мая, 14, Кострома, Россия
E-mail: *****@; *****@***

Логически выводится возможность рассматривать свет как периодическую последовательность возбуждений физического вакуума . Как следствие такого подхода разъясняется физическая природа волновых и корпускулярных свойств света.

A logical conclusion of the possibility to regard light as a period sequence of physical vacuum excitements is given in the article. As a consequence of such approach the physical nature of wave and corpuscular characteristics of light are explained here.

Введение

Многовековые попытки понять физическую природу световых явлений были прерваны в начале XX столетия введением дуальных свойств материи в аксиоматику теории. Свет стали считать и волной, и частицей одновременно. Однако, модель кванта излучения была построена формально, и до сих пор нет однозначного понимания физической природы кванта излучения.

Данная работа посвящена формированию новых теоретических представлений о физической природе света, которые должны объяснить качественно волновые и корпускулярные свойства света. Ранее в были опубликованы основные положения развиваемой модели и полученные в рамках этой модели результаты:

1. Фотон – это совокупность элементарных возбуждений вакуума, распространяющихся в пространстве в виде цепочки возбуждений с постоянной относительно вакуума скоростью, не зависящей от скорости . Для наблюдателя скорость фотона зависит от скорости наблюдателя относительно вакуума, моделируемого логически как абсолютное пространство .

2. Элементарное возбуждение вакуума – это пара фотов, диполь, образованный двумя (+) и (–) заряженными частицами. Диполи вращаются и имеют вращательный момент импульса, в совокупности составляя спин фотона. Радиус вращения фотов и угловая скорость связаны зависимостью Rω = const .

3. Фотоны можно представить как тонкие длинные цилиндрические иглы. Воображаемые поверхности цилиндров-игл образованы спиральными траекториями фотов. Чем больше частота вращения, тем тоньше игла-фотон. Один полный оборот пары фотов определяет в пространстве вдоль направления движения длину волны .

4. Энергия фотона определяется количеством пар фотов n в одном фотоне: ε = nhЭ, где hЭ – величина, равная постоянной Планка в единицах энергии .

5. Получено количественное значение спина фотона ћ. Проведен анализ связи энергетических и кинематических параметров фотона. В качестве примера вычислены кинематические параметры фотона, получаемого при переходе 3d2p в атоме водорода . Длина фотона видимой части спектра составляет метры .

6. Вычислена масса пары фотов m0 = 1,474·10–53 г, совпадающая по порядку величины с верхней оценкой массы фотона mg < 10–51 г . Простые вычисления показывают, что частица с массой mg не может быть массой фотона, отождествляемого с квантом энергии излучения. Возможно, пары фотов – это “виртуальные фотоны”, ответственные за электромагнитное взаимодействие в современной теории.

7. Получен вывод об изменении констант C и h при движении фотона в гравитационном поле .

Из периодической структуры фотона интуитивно ясна причина волновых свойств света: математика волны, как процесса механического колебания физической среды, и математика периодического процесса любой качественной природы, – совпадают. В работах дано качественное объяснение волновых и корпускулярных свойств света. В данной статье продолжается развитие представлений о физической природе света.

Волновые свойства света

Как было отмечено ранее , элементы периодичности, связанные с физической природой света, вызывают проявление волновых свойств. Проявление волновых свойств у света установлено многочисленными наблюдениями и экспериментами, и потому не может вызывать сомнений. Разработана математическая волновая теория эффекта Доплера, интерференции, дифракции, поляризации, дисперсии , поглощения и рассеяния света. Волновая теория света органично связана с геометрической оптикой: в пределе, при l → 0, законы оптики можно сформулировать на языке геометрии.

Наша модель не отменяет математический аппарат волновой модели. Основная цель и главный результат нашей работы – внесение таких изменений в аксиоматику теории, которые углубляют понимание физической сущности явления, устраняют парадоксы.

Главный парадокс современных представлений о свете – корпускулярно-волновой дуализм (КВД). В соответствии с законами формальной логики свет не может быть одновременно и волной, и частицей в традиционном понимании этих терминов. Понятие волны предполагает континуум, однородную среду, в которой возникают периодические возмущения элементов континуума. Понятие частицы предполагает изолированность и автономность отдельных элементов. Физическая интерпретация КВД не так проста.

Совмещение корпускулярной и волновой моделей по принципу “волна – это возмущение совокупности частиц” вызывает возражение, т. к. считается твердо установленным наличие волновых свойств у отдельной, единственной частицы света. Интерференцию редко летящих фотонов обнаружил Яноши , но количественных результатов, деталей и подробного анализа эксперимента в учебном курсе нет. Информация о столь важных, основополагающих результатах отсутствует и в справочных изданиях , и в курсе истории физики . Видимо, вопрос о физической природе света – это уже глубокий тыл науки.

Попытаемся реконструировать логически существенные для интерпретации результатов количественные параметры опыта Яноши по скупому описанию аналогичных опытов Бибермана, Сушкина и Фабриканта с электронами . Очевидно, в опыте Яноши сравнивалась интерференционная картина, полученная от короткого светового импульса большой интенсивности JБ с картиной, полученной за длительное время от слабого потока фотонов JМ. Существенное различие двух рассматриваемых ситуаций в том, что в случае потока JМ взаимодействие фотонов в пределах дифракционного прибора должно быть исключено.

Поскольку Яноши не обнаружил различия в интерференционных картинах, посмотрим, какие для этого необходимы условия в рамках нашей модели.

Фотон длиной Lф = 4,5 м проходит заданную точку пространства за время τ = Lф / C = 4,5 /3ּ108 ≈ 1,5ּ10–8 с. Если дифракционная система (прибор) имеет размер порядка 1 м, то время прохождения прибора фотоном длины Lф будет больше: τ’ = (Lф + 1) / C ≈ 1,8ּ10–8 с.

Единичные фотоны сторонний наблюдатель увидеть не может. Попытка зафиксировать фотон уничтожает его – другого варианта “увидеть” электрически нейтральную частицу света не существует. В эксперименте используют усредненные по времени свойства света, в частности, интенсивность (энергию в единицу времени). Чтобы фотоны не пересекались в пределах дифракционного прибора, необходимо так разделить их в пространстве вдоль траектории движения, чтобы время прохождения прибора τ’ было меньше времени t, разделяющего приход очередных фотонов к установке, т. е. τ’ < t, или t > 1,8ּ10–8 с.

В опытах с электронами средний промежуток времени между двумя последовательно проходящими через дифракционную систему частицами был примерно в 3ּ104 раз больше времени, затрачиваемого одним электроном на прохождение всего прибора . Для точечных частиц это отношение убедительно.

Опыт со светом имеет существенное отличие от опыта с электронами. Если единственность электронов за счет незначительного искажения их энергии можно контролировать, то с фотонами это невозможно. В опыте с фотонами убежденность в изолированности фотонов в пространстве не может быть полной; статистически возможен приход двух фотонов практически одновременно. Это может дать слабую интерференционную картину за длительное время наблюдения.

Результаты опытов Яноши бесспорны, однако, такое заключение нельзя сделать о теории опыта. В теории фактически постулируется, что интерференционная картина возникает исключительно как результат взаимодействия частиц между собой на поверхности экрана. В случае сильных световых потоков и наличия многих частиц это интуитивно наиболее вероятная причина появления интерференции, но для слабых световых потоков существенной может стать и другая причина появления периодичности в освещении экрана. Свет меняет направление при взаимодействии с твердым телом. Края щели, штрихи дифракционной решетки и прочие препятствия, вызывающие дифракцию – это поверхность, далекая от идеала не только в смысле чистоты обработки поверхности. Атомы поверхностного слоя – это периодическая структура с периодом, сравнимым с размерами атома, т. е. периодичность имеет ангстремный порядок. Расстояние между парами фотов внутри фотона L0 ≈ 10–12 см , что на 4 порядка меньше. Отражение пар фотов от периодической структуры поверхности должно вызывать на экране повторяемость освещенных и неосвещенных мест.

Неравноправие направлений распространения отраженного света должно быть всегда, при отражении от любой поверхности, но при сильных световых потоках существенны только усредненные характеристики, и этот эффект не проявляется. Для слабых световых потоков это может привести к освещенности экрана, напоминающей интерференцию.

Поскольку размеры электрона также много меньше размеров периодической структуры поверхности тела, для электронов также должно возникать неравноправие направлений дифрагирующих частиц, и для слабых потоков электронов это может быть единственной причиной проявления волновых свойств.

Таким образом, наличие волновых свойств у частиц, будь то фотоны или электроны, может быть объяснено наличием волновых свойств отражающей или преломляющей поверхности дифракционного прибора.

Для возможного экспериментального подтверждения (или опровержения) этой гипотезы можно предсказать некоторые эффекты.

Для сильных световых потоков основная причина интерференционных свойств света – периодическая структура самого света, – протяженного фотона. Пары фотов от разных фотонов либо усиливают друг друга на экране при совпадении фазы (векторы r между центрами фотов взаимодействующих пар совпадают по направлению), либо ослабляют в случае несовпадения фазы (векторы r между центрами фотов не совпадают по направлению) . В последнем случае пары фотов от разных фотонов не вызывают совместного одновременного действия, но они попадают в те места экрана, где наблюдается спад освещенности.

Если экран – прозрачная пластинка, то можно наблюдать следующий эффект: минимуму в отраженном свете соответствует максимум в прошедшем свете. В места, где в отраженном свете наблюдается минимум освещенности, свет также попадает, но он в этих местах не отражается, а проходит внутрь пластинки.

Взаимная дополнительность отраженного и прошедшего сквозь пластинку света в явлении интерференции – известный факт, описываемый в теории хорошо разработанным формально-математическим аппаратом волновой модели света. В частности, при отражении в теории вводится потеря полуволны, и это “объясняет” разницу фаз прошедшей и отраженной компонент.

В нашей модели новым является объяснение физической природы этого явления. Мы утверждаем, что для слабых световых потоков, когда исключено взаимодействие фотонов в пределах дифракционного прибора, существенной причиной формирования интерференционной картины будет не периодическая структура самого света, а периодическая структура поверхности устройства, вызывающего дифракцию. В этом случае уже не будет взаимодействия пар фотов от разных фотонов на поверхности экрана, и интерференция должна проявляться в том, что в тех местах, куда свет попадает, будет максимум освещенности, в других местах его не будет. В места с минимумом освещенности свет не будет попадать совсем, и это можно будет проверить отсутствием взаимной дополнительности интерференционной картины для отраженного и прошедшего света .

Другая возможность проверки рассматриваемого предсказания и нашей гипотезы в целом заключается в том, что для слабых световых потоков дифракционный прибор из другого материала , отличающегося другой поверхностной плотностью атомов, должен давать другую интерференционную картину для того же светового потока . Это предсказание также принципиально проверяемо.

Атомы поверхности отражающего тела участвуют в тепловом движении, узлы кристаллической решетки совершают гармонические колебания. Повышение температуры кристалла должно приводить к размыванию интерференционной картины в случае слабых световых потоков , т. к. в этом случае интерференция зависит только от периодической структуры отражающей поверхности. Для сильных световых потоков влияние температуры дифракционного прибора на интерференционную картину должно быть слабее, хотя оно не исключается, т. к. тепловые колебания узлов кристаллической решетки должны нарушать условие когерентности отраженных пар фотов от разных фотонов. Это предсказание также принципиально проверяемо.

Корпускулярные свойства света

В публикациях нами предложен термин “структурная модель фотона”. Анализируя сегодня комбинацию слов, заключенных в кавычки, необходимо признать ее крайне неудачной. Дело в том, что в нашей модели фотон как локализованная частица не существует. Квант лучистой энергии, отождествляемый в современной теории с фотоном, в нашей модели – совокупность возбуждений вакуума, названных парами фотов. Возбуждения распределены в пространстве вдоль направления движения. Несмотря на огромную для масштабов микромира протяженность, ввиду малости временного интервала, в течение которого такая совокупность пар пролетает мимо любого микрообъекта или налетает на него, а также ввиду относительной инерционности объектов микромира, кванты могут поглощаться этими микрообъектами целиком. Квант-фотон воспринимается как отдельная частица только в процессе такого взаимодействия с микрообъектами, когда эффект от взаимодействия микрообъекта с каждой парой фотов может накапливаться, например, в виде возбуждения электронной оболочки атома или молекулы. Свет проявляет корпускулярные свойства в процессе такого взаимодействия, когда существенным, модельно осознаваемым, теоретически учитываемым фактором является излучение или поглощение некоторого дискретного количества световой энергии.

Даже формальное представление о квантах энергии позволило Планку объяснить особенности излучения абсолютно черного тела, а Эйнштейну понять суть фотоэффекта. Представление о дискретных порциях энергии помогло по-новому описать такие физические явления, как давление света, отражение света, дисперсию – то, что уже было описано на языке волновой модели. Представление о дискретности энергии, а не представление о точечных частицах-фотонах – вот что реально существенно в современной корпускулярной модели света. Дискретность кванта энергии позволяет объяснить спектры атомов и молекул, но локализация энергии кванта в одной изолированной частице вступает в противоречие с тем экспериментальным фактом, что время излучения и время поглощения кванта энергии атомом достаточно велико по масштабам микромира – порядка 10–8 с. Если квант – локализованная точечная частица, то что тогда происходит с этой частицей за время 10–8 с? Введение в физическую модель света протяженного кванта-фотона дает возможность качественного понимания не только процессов излучения и поглощения, но и корпускулярных свойств излучения в целом.

Количественные параметры фотов

В нашей модели основным объектом рассмотрения является пара фотов. По сравнению с размерами фотона (продольные размеры для видимого света – метры) возбуждение вакуума в виде пары фотов можно считать точечным (продольный размер – порядка 10–14 м) . Оценим количественно некоторые параметры фотов. Известно, что при аннигиляции электрона и позитрона рождаются γ-кванты. Пусть рождается два γ-кванта. Оценим верхнюю границу их количественных параметров, предполагая энергию электрона и позитрона равной энергии покоя этих частиц:

Количество появившихся пар фотов равно:

. (2)

Суммарный заряд всех (–) фотов равен –e, где e – заряд электрона. Суммарный заряд всех (+) фотов равен +e. Вычислим модуль заряда, переносимого одним фотом:

Кл. (3)

Приближенно, не учитывая динамическое взаимодействие движущихся зарядов, можно считать, что в качестве центростремительной силы вращающейся пары фотов выступает сила их электростатического взаимодействия. Так как линейная скорость вращающихся зарядов равна C , получаем (в системе СИ):

где m0 / 2 = hЭ / C2 – масса одного фота . Из (4) получаем выражение для радиуса вращения центров зарядов фотов:

м. (5)

Рассматривая “электрическое” сечение фотона как площадь окружности S радиуса RЭл, получаем:

В работе приводится формула для расчета сечения фотона в рамках КЭД:

где σ измеряется в см2. Считая ω = 2πν, а ν = n (без учета размерности), получаем оценку сечения по методике КЭД:

. (8)

Различие с нашей оценкой сечения фотона составляет 6 порядков, или примерно 9%. При этом необходимо отметить, что наш результат для сечения фотона ~10–65 см2 получен в качестве верхней оценки, для аннигиляции неподвижных частиц, а реальные электрон и позитрон имеют энергию движения. С учетом кинетической энергии сечение должно быть меньше, т. к. в формуле (1) энергия частиц, переходящая в излучение, будет больше, а, следовательно, будет больше количество пар фотов. Расчетное значение заряда одного фота получится меньше (формула 3), следовательно, RЭл (формула 5) и сечение S (формула 6) будут меньше. Учитывая это, следует признать нашу оценку сечения фотона приближенно совпадающей с оценкой КЭД.

Заметим, что удельный заряд фота совпадает с удельным зарядом электрона (позитрона):

. (9)

Если фот (как и электрон) имеет гипотетический “керн”, в котором сосредоточен его заряд, и “шубу” из возмущенного физического вакуума, то “электрическое” сечение пары фотов не должно совпадать с “механическим” сечением. Пусть центры масс фотов вращаются по окружности радиуса RМех со скоростью C. Поскольку C = ωRМех, получаем:

. (10)

Таким образом, длина окружности, по которой совершают вращательное движение центры масс фотов, равна длине волны, что совершенно естественно при равенстве поступательной и вращательной скоростей в нашей интерпретации понятия “длина волны”. Но в этом случае получается, что для фотонов, получаемых в результате рассмотренной выше аннигиляции, RМех ≈ 3,8∙10–13 м ≈ 1022∙RЭл. Шуба возмущенного вакуума, окружающая керны фотов, имеет гигантские по сравнению с самим керном размеры.

Разумеется, все это достаточно приблизительные оценки. Любая новая модель не может конкурировать по точности с уже существующей моделью, достигшей своего рассвета. Например, когда появилась гелиоцентрическая модель Коперника, еще около 70 лет практические астрономические расчеты выполнялись в соответствии с геоцентрической моделью Птолемея, т. к. это приводило к более точному результату.

Введение в науку моделей на принципиально новом базисе – это не только столкновение с субъективной оппозицией, но и объективная потеря точности расчетов и предсказаний. Возможны и парадоксальные результаты. Полученное отношение порядков ~1022 между электрическим и механическим радиусами вращения фотов – это не только неожиданно, но и пока физически непонятно. Единственная возможность хоть как-то осознать полученное отношение – считать, что вращение пары фотов имеет вихревой характер, т. к. в этом случае при равенстве линейных скоростей разноудаленных от центра вращения компонентов их угловые скорости должны быть разными.

Интуитивно, вихревой характер вращения объемной структуры из тонкой среды – физического вакуума, даже более понятен, чем представление о вращении пары фотов, напоминающем вращение твердого тела. Анализ вихревого движения должен в дальнейшем привести к новому качественному пониманию рассматриваемого процесса.

Результаты и выводы

В работе продолжено развитие представлений о физической природе света. Проанализирована физическая природа корпускулярно-волнового дуализма. Предсказаны принципиально проверяемые эффекты в опытах по интерференции и дифракции слабых световых потоков. Выполнены количественные расчеты механических и электрических параметров фотов. Рассчитано поперечное сечение пары фотов и сделан вывод о вихревой структуре пары.

Литература

1. Моисеев фотона. – Деп. в ВИНИТИ 12.02.98, № 000 – В98.

2. Моисеев и энергия в структурной модели фотона. – Деп. в ВИНИТИ 01.04.98, № 000 – В98.

3. О полной энергии и массе тела в состоянии движения. – Деп. в ВИНИТИ 12.05.98, № 000 – В98.

4. Моисеев в гравитационном поле. – Деп. в ВИНИТИ 27.10.99, № 000 – В99.

5. Моисеев структуры фотона. – Кострома: Изд-во КГУ им. , 2001.

5. Моисеев фотона // Труды Конгресса-2002 “Фундаментальные проблемы естествознания и техники”, часть III, С. 229–251. – СПб, Изд-во СпбГУ, 2003.

7. Phys. Rev. Lett.3). http://prl. aps. org

8. Сивухин и ядерная физика. В 2-х ч. Ч. 1. Атомная физика. – М.: Наука, 1986.

9. Физический энциклопедический словарь. В 5 т. – М.: Советская энциклопедия, 1960–66.

10. Физика. Большой энциклопедический словарь. – М.: Большая Российская энциклопедия, 1999.

11. Кудрявцев истории физики. – М.: Просвещение, 1974.

12. Ахиезер электродинамика / , – М.: Наука, 1981.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!