Образование для Вас

Статистические оценки параметров генеральной совокупности. Статистические оценки параметров распределения Статистические оценки параметров распределения свойства оценок

) задач математической статистики .

Предположим, что имеется параметрическое семейство распределений вероятностей (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке значений, порожденной данным распределением.

Различают два основных типа оценок: точечные оценки и доверительные интервалы .

Точечное оценивание

Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)

,

значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению .

К общим методам построения точечных оценок параметров относятся: метод максимального правдоподобия , метод моментов , метод квантилей .

Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.

Состоятельность

Одно из самых очевидных требований к точечной оценке заключается в том, чтобы можно было ожидать достаточно хорошего приближения к истинному значению параметра при достаточно больших значениях объема выборки . Это означает, что оценка должна сходиться к истинному значению при . Это свойство оценки и называется состоятельностью . Поскольку речь идет о случайных величинах, для которых имеются разные виды сходимости, то и данное свойство может быть точно сформулировано по-разному:

Когда употребляют просто термин состоятельность , то обычно имеется в виду слабая состоятельность, т.е. сходимость по вероятности.

Условие состоятельности является практически обязательным для всех используемых на практике оценок. Несостоятельные оценки используются крайне редко.

Несмещенность и асимптотическая несмещенность

Оценка параметра называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

.

Более слабым условием является асимптотическая несмещенность , которая означает, что математическое ожидание оценки сходится к истинному значению параметра с ростом объема выборки:

.

Несмещенность является рекомендуемым свойством оценок. Однако не следует слишком переоценивать его значимость. Чаще всего несмещенные оценки параметров существуют и тогда стараются рассматривать только их. Однако могут быть такие статистические задачи, в которых несмещенных оценок не существует. Наиболее известным примером является следующий: рассмотрим распределение Пуассона с параметром и поставим задачу оценки параметра . Можно доказать, что для этой задачи не существует несмещенной оценки.

Сравнение оценок и эффективность

Для сравнения между собой различных оценок одного и того же параметра применяют следующий метод: выбирают некоторую функцию риска , которая измеряет отклонение оценки от истинного значения параметра, и лучшей считают ту, для которой эта функция принимает меньшее значение.

Чаще всего в качестве функции риска рассматривают математическое ожидание квадрата отклонения оценки от истинного значения

Для несмещенных оценок это есть просто дисперсия .

Существует нижняя граница на данную функцию риска, называемая неравенство Крамера-Рао .

(Несмещенные) оценки, для которых достигается эта нижняя граница (т.е. имеющие минимально возможную дисперсию), называются эффективными . Однако существование эффективной оценки есть довольно сильное требование на задачу, которое имеет место далеко не всегда.

Более слабым является условие асимптотической эффективности , которое означает, что отношение дисперсии несмещенной оценки к нижней границе Крамера-Рао стремится к единице при .

Заметим, что при достаточно широких предположениях относительно исследуемого распределения, метод максимального правдоподобия дает асимптотически эффективную оценку параметра, а если существует эффективная оценка - тогда он дает эффективную оценку.

Достаточные статистики

Статистика назвается достаточной для параметра , если условное распределение выборки при условии того, что , не зависит от параметра для всех .

Важность понятия достаточной статистики обуславливается следующим утверждением . Если - достаточная статистика, а - несмещенная оценка параметра , тогда условное математическое ожидание является также несмещенной оценкой параметра , причем ее дисперсия меньше или равна дисперсии исходной оценки .

Напомним, что условное математическое ожидание есть случайная величина, являющаяся функцией от . Таким образом, в классе несмещенных оценок достаточно рассматривать только такие, которые являются функциями от достаточной статистики (при условии, что такая существует для данной задачи).

(Несмещенная) эффективная оценка параметра всегда является достаточной статистикой.

Можно сказать, что достаточная статистика содержит в себе всю информацию об оцениваемом параметре, которая содержится в выборке .

Распределения в математической статистике характеризуется многими статистическими параметрами. Оценка неизвестных параметров распределения на основе различных данных выборки позволяет построить распределения случайной величины.

Найти статистическую оценку неизвестного параметра распределения -- найти функцию от наблюдаемых случайных величин, которая даст приближенное значение оцениваемого параметра.

Статистические оценки можно разделить на несмещенные, смещенные, эффективные и состоятельные.

Определение 1

Несмещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, равное оцениваемому параметру, то есть

Определение 2

Смещенная оценка -- статистическая оценка $Q^*$, которая при любом значении объема выборки, имеет математическое ожидание, не равное оцениваемому параметру, то есть

Определение 4

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, стремится по вероятности к оцениваемому параметру $Q.$

Определение 5

Состоятельная оценка -- статистическая оценка, при которой при объеме выборки, стремящейся к бесконечности, дисперсия несмещенной оценки стремится к нулю.

Генеральная и выборочная средние

Определение 6

Генеральная средняя -- среднее арифметическое значений вариант генеральной совокупности.

Определение 7

Выборочная средняя -- среднее арифметическое значений вариант выборочной совокупности.

Величины генерального и выборочного среднего можно найти по следующим формулам:

  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ имеют, соответственно, частоты $n_1,\ n_2,\dots ,n_k$, то
  1. Если значения вариант $x_1,\ x_2,\dots ,x_k$ различны, то

С этим понятием связано такое понятие как отклонение от средней. Данная величина находится по следующей формуле:

Среднее отклонение обладает следующими свойствами:

    $\sum{n_i\left(x_i-\overline{x}\right)=0}$

    Среднее значение отклонения равно нулю.

Генеральная, выборочная и исправленная дисперсии

Еще одними из основных параметров является понятие генеральной и выборочной дисперсии:

Генеральная дисперсия:

Выборочная дисперсия:

С этими понятия связаны также генеральная и выборочная средние квадратические отклонения:

В качестве оценки генеральной дисперсии вводится понятие исправленной дисперсии:

Также вводится понятие исправленного стандартного отклонения:

Пример решения задачи

Пример 1

Генеральная совокупность задана следующей таблицей распределения:

Рисунок 1.

Найдем для нее генеральное среднее, генеральную дисперсию, генеральное среднее квадратическое отклонение, исправленную дисперсию и исправленное среднее квадратическое отклонение.

Для решения этой задачи для начала сделаем расчетную таблицу:

Рисунок 2.

Величина $\overline{x_в}$ (среднее выборочное) находится по формуле:

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}\]

\[\overline{x_в}=\frac{\sum\limits^k_{i=1}{x_in_i}}{n}=\frac{87}{30}=2,9\]

Найдем генеральную дисперсию по формуле:

Генеральное среднее квадратическое отклонение:

\[{\sigma }_в=\sqrt{D_в}\approx 1,42\]

Исправленная дисперсия:

\[{S^2=\frac{n}{n-1}D}_в=\frac{30}{29}\cdot 2,023\approx 2,09\]

Исправленное среднее квадратическое отклонение.

План лекции:

    Понятие оценки

    Свойства статистических оценок

    Методы нахождения точечных оценок

    Интервальное оценивание параметров

    Доверительный интервал для математического ожидании при известной дисперсии нормально распределённой генеральной совокупности.

    Распределение хи-квадрат и распределение Стьюдента.

    Доверительный интервал для математического ожидании случайные величины, имеющей нормальное распределение при неизвестной дисперсии.

    Доверительный интервал для среднего квадратического отклонения нормального распределения.

Список литературы:

    Вентцель, Е.С. Теория вероятностей [Текст] / Е.С. Вентцель. – М.: Высшая школа, 2006. – 575 с.

    Гмурман, В.Е. Теория вероятностей и математическая статистика [Текст] / В.Е. Гмурман. - М.: Высшая школа, 2007. - 480 с.

    Кремер, Н.Ш. Теория вероятностей и математическая статистика [Текст] / Н.Ш. Кремер - М: ЮНИТИ, 2002. – 543 с.

П.1. Понятие оценки

Такие распределения, как биномиальное, показательное, нормальное, являются семействами распределений, зависящими от одного или нескольких параметров. Например, показательное распределение с плотностью вероятностей , зависит от одного параметра λ, нормальное распределение
- от двух параметровm и σ. Из условий исследуемой задачи, как правило, ясно, о каком семействе распределений идёт речь. Однако остаются неизвестными конкретные значения параметров этого распределения, входящие в выражения интересующих нас характеристик распределения. Поэтому необходимо знать хотя бы приближённое значение этих величин.

Пусть закон распределения генеральной совокупности определён с точностью до значений входящих в его распределение параметров
, часть из которых может быть известна. Одной из задач математической статистики является нахождение оценок неизвестных параметров по выборке наблюдений
из генеральной совокупности. Оценка неизвестных параметров заключается в построении функции
от случайной выборки, такой, что значение этой функции приближённо равно оцениваемому неизвестному параметруθ . Функция называетсястатистикой параметра θ .

Статистической оценкой (в дальнейшем просто оценкой ) параметраθ теоретического распределения называется его приближённое значение, зависящего от данных выбора.

Оценка является случайной величиной, т.к. является функцией независимых случайных величин
; если произвести другую выборку, то функция примет, вообще говоря, другое значение.

Существует два вида оценок – точечные и интервальные.

Точечной называется оценка, определяемая одним числом. При малом числе наблюдений эти оценки могут приводить к грубым ошибкам. Чтобы избежать их, используют интервальные оценки.

Интервальной называется оценка, которая определяется двумя числами – концами интервала, в котором с заданной вероятностью заключена оцениваемая величина θ .

П. 2 Свойства статистических оценок

Величину
называютточностью оценки . Чем меньше
, тем лучше, точнее определён неизвестный параметр.

К оценке любого параметра предъявляется ряд требований, которым она должна удовлетворять, чтобы быть «близкой» к истинному значению параметра, т.е. быть в каком-то смысле «доброкачественной» оценкой. Качество оценки определяют, проверяя, обладает ли она свойствами несмещённости, эффективности и состоятельности.

Оценка параметраθ называется несмещённой (без систематических ошибок), если математическое ожидание оценки совпадает с истинным значением θ :

. (1)

Если равенство (1) не имеет места, то оценка называетсясмещённой (с систематическими ошибками). Это смещение может быть связано с ошибками измерения, счёта или неслучайным характером выборки. Систематические ошибки приводят к завышению или занижению оценки.

Для некоторых задач математической статистики может существовать несколько несмещённых оценок. Обычно предпочтение отдают той, которая обладает наименьшим рассеянием (дисперсией).

Оценка называетсяэффективной , если она имеет наименьшую дисперсию среди всех возможных несмещённых оценок параметра θ .

Пусть D () – минимальная дисперсия, а
– дисперсия любой другой несмещённой оценкипараметраθ . Тогда эффективность оценки равна

. (2)

Ясно, что
. Чем ближе
к 1, тем эффективнее оценка. Если
при
, то оценка называетсяасимптотически эффективной .

Замечание : Если оценка смещённая, то малости её дисперсии ещё не говорит о малости её погрешности. Взяв, например, в качестве оценки параметраθ некоторое число , получим оценку даже с нулевой дисперсией. Однако в этом случае ошибка (погрешность)
может быть сколь угодно большой.

Оценка называетсясостоятельной , если с увеличением объема выборки (
) оценка сходится по вероятности к точному значению параметраθ , т.е. если для любого

. (3)

Состоятельность оценки параметраθ означает, что с ростом n объема выборки качество оценки улучшается.

Теорема 1. Выборочная средняя является несмещённой и состоятельной оценкой математического ожидания.

Теорема 2. Исправленная выборочная дисперсия является несмещённой и состоятельной оценкой дисперсии.

Теорема 3. Эмпирическая функция распределения выборки является несмещённой и состоятельной оценкой функции распределения случайной величины.

Изучив эту главу, студент будет знать, что выборка может рассматриваться как эмпирический аналог генеральной совокупности, что с помощью выборочных данных можно судить о свойствах генеральной совокупности и оценивать ее характеристики, основные законы распределения статистических оценок, уметь производить точечные и интервальные оценки параметров генеральной совокупности методом моментов и максимального правдоподобия, владеть способами определения точности и надежности полученных оценок.

Виды статистических оценок

О параметрах генеральной совокупности мы знаем то, что они объективно существуют, но определить их непосредственно невозможно в силу того, что генеральная совокупность или бесконечна или чрезмерно велика. Поэтому может стоять вопрос только об оценке этих характеристик.

Ранее было установлено, что для выборки, извлеченной из генеральной совокупности, при соблюдении условий репрезентативности, можно определить характеристики, которые являются аналогами характеристик генеральной совокупности.

cjp Определение 8.1. Приближенные значения параметров распределения, найденные по выборке, называются оценкой параметра.

Обозначим оцениваемый параметр случайной величины (генеральной совокупности) как 0, а его оценку, полученную с помощью выборки, 0.

Оценка 0 является случайной величиной, поскольку любая выборка является случайной. Оценки, полученные для разных выборок, будут отличаться друг от друга. Поэтому будем считать 0 функцией, зависящей от выборки: 0 = 0(Х в).

ЩР Определение 8.2. Статистическая оценка называется состоятельной, если она стремиться по вероятности к оцениваемому параметру:

Это равенство означает, что событие 0=0 становится достоверным при неограниченном возрастании объема выборки.

В качестве примера можно привести относительную частоту некоторого события А, которая является состоятельной оценкой вероятности этого события в соответствии с теоремой Пуассона (см. формулу (6.1), часть 1).

Определение 8.3. Статистическая оценка называется эффективной, если она имеет наименьшую дисперсию при одних и тех же объемах выборки.

Рассмотрим оценку М х математического ожидания М х случайной величины X. В качестве такой оценки выберем X . Найдем математическое ожидание случайной величины X .

Сначала сделаем важное утверждение: учитывая то, что все случайные величины X, извлекаются из одной и той же генеральной совокупности X, а значит, имеют одно и то же распределение что и X, можно записать:

Теперь найдем М(Х в):


Таким образом, выборочная средняя является статистической оценкой математического ожидания случайной величины. Эта оценка является состоятельной поскольку в соответствии со следствием из теоремы Чебышева она сходится по вероятности к математическому ожиданию (6.3).

Мы установили, что в рассматриваемом случае математическое ожидание выбранной нами оценки (случайной величины) равно самому оцениваемому параметру. Оценки, обладающие таким свойством, занимают особое место в математической статистике, они называются несмещенными.

Определение 8.4. Статистическая оценка © называется несмещенной, если ее математическое ожидание равно оцениваемому параметру

Если это требование не выполнено, то оценка называется смещенной.

Таким образом, выборочная средняя является несмещенной оценкой математического ожидания.

Проведем анализ смещенности выборочной дисперсии D , если ее выбрать в качестве оценки генеральной дисперсии D x . Для этого проверим выполнимость условия (8.2) для?) :


Преобразуем каждое из двух полученных слагаемых:

Здесь было использовано равенство М(Х.) = М(Х 2), справедливое по той же причине, что и (8.1).

Рассмотрим второе слагаемое. С помощью формулы квадрата суммы п слагаемых получаем


учитывая снова равенство (8.1), а также то, что X. и X независимые случайные величины запишем

и окончательно получим:

Подставим полученные результаты в (8.3)

После преобразования получим

Таким образом, можно сделать вывод, что выборочная дисперсия является смещенной оценкой генеральной дисперсии.

Учитывая полученный результат, поставим задачу построить такую оценку генеральной дисперсии, которая удовлетворяла бы условию несмещенности (8.2). Для этого рассмотрим случайную величину

Легко видеть, что для этой величины условие (8.2) выполняется:

Заметим, что различие между выборочной дисперсией и исправленной выборочной дисперсией становятся незначительными при больших объемах выборки.

При выборе оценок характеристик случайных величин важно знать их точность. В некоторых случаях требуется высокая точность, а иногда достаточно иметь грубую оценку. Например, планируя перелет с пересадкой нам важно знать как можно точнее планируемое время прилета к месту стыковки авиарейсов. В другой ситуации, например, находясь дома и ожидая курьера с заказанным нами товаром, высокая точность времени его прибытия для нас не важна. В обоих случаях случайной величиной является время прибытия, а интересующей нас характеристикой случайной величины - среднее время в пути.

Оценки бывают двух видов. В первом случае ставится задача получить конкретное числовое значение параметра. В другом случае определяется интервал, в который с заданной вероятностью попадает интересующий нас параметр.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!